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Abstract
In view of the current discussion on the subject, an effort is made to show very
accurately both analytically and numerically how the Drude dispersion model,
assuming the relaxation is nonzero at zero temperature (which is the case when
impurities are present), gives consistent results for the Casimir free energy at
low temperatures. Specifically, we find that the free energy consists essentially
of two terms, one leading term proportional to T 2 and a next term proportional
to T 5/2. Both these terms give rise to zero Casimir entropy as T → 0, thus in
accordance with Nernst’s theorem.

PACS numbers: 05.30.−d, 42.50.Nn, 12.20.Ds, 65.40.Gr

1. Introduction

The thermodynamic consistency of the expression for the Casimir pressure at finite temperature
T is of considerable current interest. The problem gets accentuated at low T, where according
to Nernst’s theorem S = −∂F/∂T → 0 when T → 0. Here S is the entropy and F is the free
energy per unit surface area. We shall consider the standard Casimir configuration, namely
two semi-infinite identical metallic media separated by a vacuum gap of width a. The media
are assumed nonmagnetic with a frequency-dependent relative permittivity ε(ω). The two
surfaces lying at z = 0 and z = a are taken to be perfectly planar and of infinite extent. A
sketch of the setup is given in figure 1.
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Figure 1. Sketch of the geometry.

The present work is closely related to our recent paper [1] in particular, and also to our
earlier papers on the thermal Casimir effect [2–6].

We start from the Lifshitz formula:

βF = 1

2π

∞∑
m=0

′
∫ ∞

ζm/c

[ln(1 − A e−2qa) + ln(1 − B e−2qa)]q dq, (1)

where

A =
(

s − εp

s + εp

)2

(TM mode) (2a)

B =
(

s − p

s + p

)2

(TE mode) (2b)

ζm = 2πk

h̄
mT , β = 1/kT (2c)

s =
√

ε − 1 + p2, p = qc

ζm

. (2d)

Here ζm are the Matsubara frequencies, s and p are the Lifshitz variables, and the prime on the
summation sign means that the case m = 0 is to be taken with half weight.

The appropriate dispersion relation to use is the Drude relation

ε(iζ ) = 1 +
ω2

p

ζ(ζ + ν)
, (3)

where ω = iζ, ωp being the plasma frequency, and ν the relaxation frequency. The plasma
wavelength is λp = 2πc/ωp. Our motivation for adopting the form (3) is that it agrees well
with permittivity measurements (performed at room temperature). In the case of gold,

ωp = 9.03 eV, ν = 34.5 meV, λp = 137.4 nm. (4)

The Drude relation is good for ζ < 2 × 1015 rad s −1. For higher ζ , the relation gives too
low values for the permittivity (cf figure 1 in [6]). Actually, the numerical input data we used
were taken directly from tabulated data along the imaginary frequency axis, ε(iζ ) for ζ > 0
(courtesy of Astrid Lambrecht). These data cover seven decades:

1.5 × 1011 < ζ < 1.5 × 1018 rad s−1. (5)

For ζ < 1.5×1011 values for ε(iζ ) are obtained from (3) by extrapolation, but by our numerical
evaluations only the m = 0 value fell within this region.
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Table 1. The Casimir pressure (in mPa) between Au–Au plates versus gap width a, when
T = {1, 300, 350} K. Data extracted from [3].

a(µm) T = 1 K T = 300 K T = 350 K

0.2 508.2 497.8 495.7
0.5 16.56 15.49 15.30
1.0 1.143 0.9852 0.9590
2.0 7.549 × 10−2 5.550 × 10−2 5.344 × 10−2

3.0 1.520 × 10−2 1.033 × 10−2 1.049 × 10−2

4.0 4.858 × 10−3 3.481 × 10−3 3.804 × 10−3

As mentioned, the permittivity measurements are made at room temperature. For
definiteness, we shall in the following use the room-temperature value ν = 34.5 meV already
given in (4), although we expect that at very low temperatures the true value of ν is actually
lower—cf the recent discussion on this point by Klimchitskaya and Mostepanenko [7]. This
fact will change our results quantitatively, but not qualitatively. In particular, it will not change
our main conclusion regarding the validity of the Nernst theorem when T → 0.

Let us emphasize the main assumption underlying our calculations: we assume ν to
possess a nonzero value, however small, at any fixed temperature including T = 0.

The assumed constancy of ν might be questioned, as the Bloch–Grüneisen law predicts
that ν depends on T as (cf appendix D in [6])

ν(T ) ∝ T 5, T → 0. (6)

Such a relationship is not followed in practice, however, since there are always impurities
which give rise to nonzero resistivity and so nonzero relaxation frequency at zero temperature
[8]. In practice, therefore, our assumption above is always satisfied. The important point is
that the relationship

ζ 2[ε(iζ ) − 1] → 0, ζ → 0 (7)

is always satisfied. It implies that the zero-frequency TE mode does not contribute to the
Casimir force. The first to emphasize this kind of behaviour were Boström and Sernelius [9],
and the issue was discussed in detail in [6]. There are several other papers arguing along
similar lines. Thus Jancovici and Šamaj [10] and Buenzli and Martin [11] considered the
classical plasma of free charges in the high-temperature limit, where only zero frequency
contributes, and they found the linear dependence in T in the Casimir force to be reduced by
a factor of 2 from the behaviour of an ideal metal (the IM model).

To illustrate the magnitude of the Drude thermal correction to the Casimir pressure, we
give in table 1 some calculated values, in mPa. It should be noted that if T increases from
300 K to 350 K, we find that

(i) if a = 0.2 µm, the Casimir pressure diminishes by 0.4%;
(ii) if a = 2.0 µm, the Casimir pressure diminishes by 3.7%.
The optimum gap width in connection with Casimir thermal corrections thus seems to lie

around a = 2 µm.
An argument that has been put forward against the Drude relation is that by omitting the

zero-frequency TE term one gets a term linear in T in the free energy. Such a term would
lead to a finite entropy at T = 0 and so come into conflict with Nernst’s theorem. There are
several recent papers arguing along these lines, written from somewhat different perspectives
[7, 12–17], and it is argued there that for perfect crystal lattices the Drude model violates the
Nernst theorem. It is argued therein that for thermodynamical consistency, relaxation due to
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electron–phonon scattering present at finite temperature should be neglected, and the use of
the plasma dispersion relation

ε(iζ ) = 1 +
ω2

p

ζ 2
, (8)

or a generalized version thereof is presented. Relation (8) corresponds to setting ν = 0 in
(3), such that (8) does not satisfy condition (7). The plasma relation leads to quite a small
temperature dependence in the Casimir force (correction ∝ T 4) in contrast to the distinct and
almost linear decay with the Drude relation. Actually, the Drude theory in the limit ν → 0
preserves entropy S = 0 at T = 0, but S changes more and more abruptly at T = 0 the smaller
ν is.

In the following we intend to show very accurately, both analytically and numerically,
how the Drude relation with ν �= 0 leads to results that are in full agreement with the Nernst
theorem.

2. Analytical approach

We start from the Drude model assuming some constant value for ν, and consider in
the following only Matsubara frequencies that are relatively small, ζ(≡ζm) � ν. These
frequencies are the crucial ones for the behaviour in the T → 0 limit. It is always possible to
consider these frequencies when ν, as mentioned above, is finite. Then,

ε(iζ ) = ω2
p

ζ(ζ + ν)
≈ D

ζ
, D = ω2

p

ν
. (9)

We consider only the TE mode, which is the mode of main interest. Replace q by x:

x2 = q2c2

(ε − 1)ζ 2
= q2c2

Dζ
, ζ � ν. (10)

Then the TE mode coefficient (2) becomes

B = (√
1 + x2 − x

)4
, (11)

and the TE part of the free energy can be written as

βF TE = C

∞∑
m=0

′g(m), (12)

where

g(m) = m

∫ ∞
√

ζ/D

x ln

[
1 − B exp

(
−2a

c

√
Dζx

)]
dx. (13)

Now invoke the Euler–Maclaurin formula:
∞∑

m=0

′g(m) =
∫ ∞

0
g(u) du − 1

12
g′(0) +

1

720
g′′′(0) − · · · . (14)

One then finds that

g′(0) =
∫ ∞

0
x ln(1 − B) dx = −1

4
(2 ln 2 − 1). (15)

And thereby one gets

	F TE = C

48β
(2 ln 2 − 1) = 1

48

ω2
p

c2h̄ν
(kT )2(2 ln 2 − 1), (16)

valid for T � 0.01 K. This result was first given by Milton at the QFEXT03 workshop [5].
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Including the leading correction (Euler–Maclaurin summation starting at m = 1 instead
of at zero), one gets [1]

	F TE = C

β

[
− 1

12
g′(0)

] [
1 + 0.204

3a
√

2πC

12g′(0)
+ · · ·

]
. (17)

For gold plates, with a = 1 µm

	F TE = C1T
2[1 − C2T

1/2 + · · ·], (18)

with

C1 = 5.81 × 10−13 J(m2K2)−1, C2 = 3.03 K−1/2. (19)

In order to avoid negative values for T slightly larger than 0.1 K, it is convenient to introduce
the Padé approximant form

	F TE
th = C1T

2

1 + C2T 1/2
. (20)

This is equivalent to (18) with respect to the first two terms. Results (18)–(20) were first
obtained in [1].

3. Numerical calculations

In the numerical calculations we assume two gold plates, with a = 1 µm. All dispersive data
needed are in the experimentally known region given by (5). As mentioned, the only place
where there is a need to use the Drude relation (3) explicitly is when m = 0. Actually, it is
immaterial whether we use the experimental Lambrecht data (5) or the Drude relation directly.
Thus figure 4 is calculated with the use of the Drude relation for all frequencies, but it turns
out that a practically identical figure is obtained if we use Lambrecht’s data.

At T = 0 the free energy is calculated numerically as a double integral rather than a sum
of integrals, using a two-dimensional version of Simpson’s method with adaptive quadrature.

As for the TM mode, it is known that for ideal or nonideal metals the temperature
correction for this mode behaves as T 4. Thus, it is a smaller correction than the T 2 and T 5/2

corrections associated with the TE mode. We repeat that the dependence of ν on temperature
is neglected, and that we employ the room-temperature values for ν given in (4).

The vanishing of the zero-frequency mode is connected with the behaviour of the
coefficient B at vanishing frequency. To illuminate this point, we show in figure 2 both
coefficients A and B as a function of imaginary frequency and transverse momentum k⊥ for
an interface between gold and vacuum. In part (c) of the figure, we see how B → 0 when
ζ → 0 for k⊥ �= 0, whereas A in figure 2(a) for the TM mode equals 1 for all k⊥ when ζ → 0.

By direct numerical integration and lengthy summations independent of the analytical
derivations made in the previous section, we obtain the free energy numerically. Figure 3
shows the free energy versus temperature up to 800 K, while the inset shows details of the
parabolic shape close to T = 0. The figure shows the decrease of the magnitude of the free
energy and thus also the related decrease of the Casimir force up to a certain temperature. The
inset shows how the slope is horizontal at T = 0, as predicted. Thus the entropy at T = 0 is
zero, in accordance with Nernst’s theorem.

4. A more accurate test

Now, there are always uncertainties connected with numerical calculations. It is possible to
make a much more accurate and sensitive test of the behaviour near T = 0 in the following
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Figure 2. Squared reflection coefficients A and B of the metal interfaces for the TM and TE modes,
as a function of ζ/c and the transverse momentum k⊥. (a) A for the TM mode, (b) B for the TE
mode and (c) B for k⊥ and ζ close to zero.

way. Define the quantity R as the relative difference between the temperature-dependent
theoretical free energy 	F TE

th , and the temperature-dependent numerical free energy 	F TE
num:

R = 	F TE
th − 	F TE

num

	F TE
th

. (21)

Assume for 	F TE
th the Padé approximant form (20), and assume for 	F TE

num the expansion

	F TE
num = D1(T

2 − D2T
5/2 + D3T

3 + · · ·) (22)

with calculated values for the coefficients D1,D2 and D3. Then,

R = C1 − D1

C1
+

D1

C1
(D2 − C2)T

1/2 +
D1

C1
(C2D2 − D3)T + · · · . (23)

If C1 = D1 and C2 = D2:

R(T = 0) = 0, R ∝ T , T → 0. (24)

Calculated values of R are plotted in figure 4. We see that R, when extrapolated, approaches
zero linearly with a finite slope. This demonstrates the accuracy of the T 2 and T 5/2 terms in
the free energy.
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Figure 4. Plot of the ratio R defined in (21).

5. Alternative derivation by expansion of g(m)

It may be of interest to mention that, as a variant of the analytic approach, the dependence of
the free energy on T near T = 0 can be found by means of complex integration. Start from
the TE expression

βF = C

∞∑
m=0

′
∫ ∞

√
ζ/D

x ln(1 − B e−αx) dx, (25)
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where

C = ω2
p

βh̄νc2
, α = 2a

√
2πCm, (26)

and expand the logarithm,

βF TE = −C

∞∑
m=1

m

∫ ∞

0
x

∞∑
n=1

Bn e−nαx dx. (27)

Now use the formula

e−nαx = 1

2π i

∫ c+i∞

c−i∞
ds(nαx)−s�(s), 4 > c > 0 (28)

and sum over m,
∞∑

m=1

m1−s/2 = ζ
( s

2
− 1

)
. (29)

Here ζ denotes the Riemann zeta function. Distorting the contour so as to encircle the poles
of the � function at s = 0,−1, . . . then yields the same result (18) as above.

6. Summary and further remarks

The main point in our analysis has been to show both analytically and numerically that the
Drude dispersion relation (3) does not run into conflict with basic thermodynamics, as long as
ν �= 0 at T = 0. As we have seen, quite an accurate analysis is needed for this purpose. If we
instead had argued in a more crude way, simply setting the TE coefficient Bm = 0 for m = 0
and keeping all the other coefficients Am and Bm equal to 1 as in the modified ideal metal
model (MIM), then we would have broken Nernst’s theorem. This issue has been discussed
at length in [6, 18].

Whether the Drude predictions for the Casimir force are correct or not is to be decided
upon from experiments. A difficulty here is the inherent uncertainty of theoretical predictions
due to the relatively large spread of published data for the dielectric permittivity for typical
metals such as Au—cf, for instance, the recent discussions on this point by Pirozhenko
et al [19] and Munday and Capasso [20]. The experiment with the highest precision [15, 16]
apparently is in disagreement with the Drude model, or any model satisfying (7). It has also
been suggested that there are large thermal effects due to surface roughness [21]. We might
note that the 1% precision in the dynamic measurement made by the Purdue group [15, 16]
is not matched by the 3% accuracy of the very recent dynamic experiment reported in [22].
Our main concern in the present paper, however, has been to discuss the consistency of this
theory. We wish to point out that it would be quite strange if the Drude relation, proved to be
representing permittivity measurements with great accuracy, should turn out to be inapplicable
to explain Casimir force measurements. Let us also mention here that an interesting discussion
about the thermal Casimir effect and the Johnson noise has recently been given by Bimonte
[23], as a possible theoretical explanation for the discrepancy with experiment.

The basic assumption for our analysis ought to be re-emphasized. We assumed the
relaxation frequency ν to be a finite quantity, for any value of T. One might here raise the
question: what happens if the metal is a perfect crystal, with no impurities at all? In such a
case ν(T = 0) = 0, and the above formalism becomes inapplicable. (In this case we have
an opinion different from the definitive claim of a violation of the Nernst theorem given in
[15, 17], for example. See also [24].) On the basis of the above calculation, we can thus make
no firm statement about the validity of the Nernst theorem in this special case.
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We ought to mention, though, that on physical grounds there are conceptual difficulties
in simply setting ν = 0 in the dispersion relation:

(i) It would yield a contribution to the Casimir force from the zero-frequency TE mode. This
mode is, however, not a solution of Maxwell’s equations and should therefore not occur.
(A more detailed discussion can be found in [6], and in section 3 in [25].)

(ii) Introducing a zero TE mode for perfect crystals would imply that such a medium would
behave differently from a real metal when taking the limit ν = 0. This would create a
discontinuity in behaviour that we find unphysical.

There are additional physical effects that we have not taken into account above:

(1) One such effect is spatial dispersion [26], implying that the wave vector k is present in
the dispersion relation. Then ε = ε(ω, k) would become finite for finite k. Only the
special case ε(0, 0) would be infinite, and it would not appear natural that this ‘measure
zero’ case should yield a finite contribution to the Casimir force4.

(2) Another effect that could have been taken into account is the anomalous skin effect
[28, 29]. This effect occurs when the mean free path in the metal becomes much larger
than the field penetration depth near T = 0. Again, no contribution to the Casimir force
is found from the zero TE mode, and the Nernst theorem is satisfied.

Finally, we refer to the very recent microscopic theory of the Casimir force at large
separations, i.e. the classical limit, using statistical mechanics [30]—cf also [31] and further
references therein. These authors make use of a joint functional representation of both matter
and field, enabling them to integrate out the field degrees of freedom entirely. Important in
our context is that they find the TE modes not to contribute in this regime, and that the Casimir
surface pressure is

P = −ζ(3)kT

8πa3
, a → ∞. (30)

This is precisely as predicted by the Drude model in the same limit. This conclusion is
further supported by Svetovoy’s recent demonstration [32] of the cancellation between TE
evanescent wave (EW) and propagating wave (PW) contributions for large distances, yielding
equation (30), while at short distances the TE EW dominates for the force between two metal
plates or between a metal plate and a dielectric plate, resulting in a linear temperature term in
the force.
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